Some Bounds on the Modified Randic Index
نویسندگان
چکیده
In this paper, we present some new lower and upper bounds for the modified Randic index in terms of maximum, minimum degree, girth, algebraic connectivity, diameter and average distance. Also we obtained relations between this index with Harmonic and Atom-bond connectivity indices. Finally, as an application we computed this index for some classes of nano-structures and linear chains.
منابع مشابه
The Computation of New Versions of Randic Index for TUC C (R) Nanotubes
Recently, the subdivision Randic index was introduced. In this paper, we present new version of Randic index by using some graph operator and in related to the subdivision Randic index. Next, by using some results about this version, it is computed for TUC C (R) nanotubes. 4 8
متن کاملSufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs
Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree and its in-degree . Now let D be a digraph with minimum degree and edge-connectivity If is real number, then the zeroth-order general Randic index is defined by . A digraph is maximally edge-connected if . In this paper we present sufficient condi...
متن کاملOn the Higher Randić Index
Let G be a simple graph with vertex set V(G) {v1,v2 ,...vn} . For every vertex i v , ( ) i v represents the degree of vertex i v . The h-th order of Randić index, h R is defined as the sum of terms 1 2 1 1 ( ), ( )... ( ) i i ih v v v over all paths of length h contained (as sub graphs) in G . In this paper , some bounds for higher Randić index and a method for computing the higher R...
متن کاملBounds for Randic and GA Indices
The paper establishes some new bounds for Randic and GA indices.
متن کاملOn the eigenvalues of some matrices based on vertex degree
The aim of this paper is to compute some bounds of forgotten index and then we present spectral properties of this index. In continuing, we define a new version of energy namely ISI energy corresponded to the ISI index and then we determine some bounds for it.
متن کامل